Saturday, January 14, 2017

RF vs GB

error=bias+variance
  • Boosting is based on weak learners (high bias, low variance). In terms of decision trees, weak learners are shallow trees, sometimes even as small as decision stumps (trees with two leaves). Boosting reduces error mainly by reducing bias (and also to some extent variance, by aggregating the output from many models).
  • On the other hand, Random Forest uses as you said fully grown decision trees (low bias, high variance). It tackles the error reduction task in the opposite way: by reducing variance. The trees are made uncorrelated to maximize the decrease in variance, but the algorithm cannot reduce bias (which is slightly higher than the bias of an individual tree in the forest). Hence the need for large, unprunned trees, so that the bias is initially as low as possible.
Please note that unlike Boosting (which is sequential), RF grows trees in parallel. The term iterative that you used in thus inappropriate.


  1. RF uses decision trees, which are very prone to overfitting. In order to achieve higher accuracy, RF decides to create a large number of them based on bagging. The basic idea is to resample the data over and over and for each sample train a new classifier. Different classifiers overfit the data in a different way, and through voting those differences are averaged out.
  2. GBM is a boosting method, which builds on weak classifiers. The idea is to add a classifier at a time, so that the next classifier is trained to improve the already trained ensemble. Notice that for RF each iteration the classifier is trained independently from the rest.

No comments:

Post a Comment